
 Draft for Review

Intel® Platform Innovation Framework
for EFI

PCI Platform Support Specification

Draft for Review

Version 0.9
August 9, 2004

PCI Platform Support Specification Draft for Review

ii August 2004 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 August 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 8/9/04

PCI Platform Support Specification Draft for Review

iv August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
Target Audience.. 11
PCI Platform Support Related Terms.. 11
PCI Platform Support Related Information.. 11
PCI Platform Protocol.. 12

PCI Platform Protocol Overview... 12
Incompatible PCI Device Support Protocol ... 13

Incompatible PCI Device Support Protocol Overview .. 13
Usage Model for the Incompatible PCI Device Support Protocol................................. 13

3 Code Definitions... 15
Introduction ... 15
PCI Platform Protocol.. 15

EFI_PCI_PLATFORM_PROTOCOL.. 15
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify() .. 17
EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController() 19
EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy().. 21
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() .. 24

Incompatible PCI Device Support Protocol ... 26
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL 26
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() 28

Tables
Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage................................... 29
Table 3-2. ACPI 2.0 End Tag Usage .. 30

PCI Platform Support Specification Draft for Review

vi August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
following protocols in the Intel® Platform Innovation Framework for EFI (hereafter referred to as
the "Framework"):
• PCI Platform Protocol
• Incompatible PCI Device Support Protocol
The PCI Platform Protocol allows a PCI bus driver to obtain the platform policy and call a platform
driver at various points in the enumeration phase. The Incompatible PCI Device Support Protocol
allows a PCI bus driver to handle resource allocation for some PCI devices that do not comply with
the PCI Specification.
This specification does the following:
• Describes the basic components of the PCI Platform Protocol
• Describes the basic components of the Incompatible PCI Device Support Protocol and how

Framework-based firmware configures incompatible PCI devices
• Provides code definitions for the PCI Platform Protocol, the Incompatible PCI Device Support

Protocol, and their related type definitions that are architecturally required by the Intel®
Platform Innovation Framework for EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

PCI Platform Support Specification Draft for Review

8 August 2004 Version 0.9

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that

 Draft for Review Introduction

Version 0.9 August 2004 9

uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

PCI Platform Support Specification Draft for Review

10 August 2004 Version 0.9

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 August 2004 11

2
Design Discussion

Target Audience
This document is intended for the following readers:
• BIOS developers, either those who create general-purpose BIOS and other firmware products

or those who modify these products for use in Intel® architecture-based products.
• Operating system developers who will be adapting their shrink-wrapped operating system

products to run on Intel architecture-based platforms.
Readers of this specification are assumed to have solid knowledge of the following documents:
• EFI 1.10 Specification
• Intel® Platform Innovation Framework for EFI Architecture Specification, version 0.9
• IA-32 Intel® Architecture Software Developer's Manual
See Related Information from Intel Corporation in the master Framework help system for the URLs
for these documents.

PCI Platform Support Related Terms
The following terms are used throughout this document. See the following Framework
specifications for additional definitions of PCI-related terms:
• Intel® Platform Innovation Framework for EFI PCI Host Bridge Resource Allocation Protocol

Specification
• Intel® Platform Innovation Framework for EFI Hot-Plug PCI Initialization Protocol

Specification

incompatible PCI device
A PCI device that does not fully comply with the PCI Specification. Typically, this kind of
device has a special requirement for Base Address Register (BAR) allocation. Some devices
may want a special resource length or alignment, while others may want fixed I/O or memory
locations.

PCI Platform Support Related Information
The following publications and sources of information may be useful to you or are referred to by
this specification.

Specifications from Intel Corporation
• Intel® Platform Innovation Framework for EFI PCI Host Bridge Resource Allocation Protocol

Specification, version 0.9
• IA-32 Intel® Architecture Software Developer's Manual, volumes 1–3: See Related

Information from Intel Corporation in the master Framework help system for the URL.

PCI Platform Support Specification Draft for Review

12 August 2004 Version 0.9

Industry Specifications
• Advanced Configuration and Power Interface Specification (hereafter referred to as the ACPI

Specification), version 2.0: See Industry Specifications in the master Framework help system
for the URL.

PCI Specifications
• Conventional PCI Specification, version 3.0: http://www.pcisig.com*
• PCI-to-PCI Bridge Architecture Specification, revision 1.2: http://www.pcisig.com*
• PCI-to-PCI Bridges and CardBus Controllers on Windows 2000, Windows XP, and Windows

Server 2003:
http://www.microsoft.com/whdc/system/bus/PCI/pcibridge-cardbus.mspx*

PCI Platform Protocol

PCI Platform Protocol Overview
The Intel® Platform Innovation Framework for EFI PCI Host Bridge Resource Allocation Protocol
Specification defines and describes the PCI Host Bridge Resource Allocation Protocol. The PCI
Host Bridge Resource Allocation Protocol driver provides chipset-specific functionality that works
across processor architectures and unique platform features. It does not address issues where an
implementation varies across platforms.
In contrast, the PCI Platform Protocol that is defined here in this specification provides a set of
protocol interfaces that allow the platform driver to do platform-specific actions. The purpose of the
PCI Platform Protocol is to do the following:
• Allow a PCI bus driver to obtain platform policy. The platform can use this protocol to

control whether the PCI bus driver reserves I/O ranges for ISA aliases and VGA aliases. The
default policy for the PCI bus driver is to reserve I/O ranges for both ISA aliases and VGA
aliases, which may result in a large amount of I/O space being unavailable for PCI devices.
This protocol allows the platform driver to change this policy.

• Call a platform driver at various points in the enumeration phase. The platform driver can
use these hooks to perform various platform-specific activities. Examples of such activities
include but are not limited to the following:

• EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController() can be used to
program the PCI subsystem vendor ID and device ID into onboard and chipset devices.

• PlatformPrepController() and
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify() can be used for implementing
hardware workarounds.

• PlatformPrepController() can be used for preprogramming any backside registers
that control the Base Address Register (BAR) window sizes.

• PlatformPrepController() can be used to set PCI or PCI-X* bus speeds for PCI
bridges that support multiple bus speeds.

• Data hub records that are related to the PCI slot and embedded devices can be logged after PCI
enumeration is complete.

 Draft for Review Design Discussion

Version 0.9 August 2004 13

• Allow PCI option ROMs to be stored in local storage. The platform can store PCI option
ROMs in local storage (e.g., a firmware volume) and report their existence to the PCI bus
driver using the EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() member function.
Option ROMs for embedded PCI controllers are often stored in a platform-specific location.
The same member function can be used to override the default PCI ROM on an add-in card
with one from platform-specific storage.

A platform should implement this protocol if any of the functionality that is listed above is
required.
See Code Definitions for the definition of EFI_PCI_PLATFORM_PROTOCOL and the member
functions listed above. See the Intel® Platform Innovation Framework for EFI PCI Host Bridge
Resource Allocation Protocol Specification for additional PCI-related design discussion.

Incompatible PCI Device Support Protocol

Incompatible PCI Device Support Protocol Overview
Some PCI devices do not fully comply with the PCI Specification. For example, a PCI device may
request that its I/O Base Address Register (BAR) be placed on a 0x200 boundary even though it is
requesting an I/O with a length of 0x100. The Incompatible PCI Device Support Protocol allows a
PCI bus driver to handle resource allocation for some PCI devices that do not comply with the PCI
Specification.
In Framework-based firmware, the platform-specific PCI host bridge driver works with the generic,
standard PCI bus driver to configure the entire PCI subsystem. Even though the exact configuration
is up to individual incompatible devices, it is a platform choice to support those incompatible PCI
devices. For example, one platform may not want to support those incompatible devices while
another platform appears more tolerant of those devices.
See Code Definitions for the definition of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.

Usage Model for the Incompatible PCI Device Support Protocol
The following describes the usage model for the Incompatible PCI Device Support Protocol:
1. The PCI bus driver locates EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.

If the PCI bus driver cannot find this protocol, simply follow the regular PCI enumeration path.
Otherwise, go to step 2.

2. For each PCI device that was detected, the PCI bus driver begins collecting the required PCI
resources by probing the Base Address Register (BAR) for each device.

3. For each device, call
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() to check
whether this PCI device is an incompatible device. If this device in not an incompatible device,
go to step 5.

4. Use the Configuration that is returned by CheckDevice() to override or modify the
original PCI resource requirements.

5. Follow the normal PCI enumeration process.

PCI Platform Support Specification Draft for Review

14 August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 15

3
Code Definitions

Introduction
This section contains the basic definitions of Framework protocols that provide PCI platform
support. The following protocols are defined in this section:
• EFI_PCI_PLATFORM_PROTOCOL
• EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in "Related Definitions" of the parent function definition:
• EFI_PCI_CHIPSET_EXECUTION_PHASE
• EFI_PCI_PLATFORM_POLICY

PCI Platform Protocol

EFI_PCI_PLATFORM_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and a platform-specific driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_PLATFORM_PROTOCOL_GUID \
{ 0x7d75280, 0x27d4, 0x4d69, 0x90, 0xd0, 0x56, 0x43, 0xe2, 0x38,
0xb3, 0x41);

Protocol Interface Structure
typedef struct _EFI_PCI_PLATFORM_PROTOCOL {
 EFI_PCI_PLATFORM_PHASE_NOTIFY PlatformNotify;
 EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER PlatformPrepController;
 EFI_PCI_PLATFORM_GET_PLATFORM_POLICY GetPlatformPolicy;
 EFI_PCI_PLATFORM_GET_PCI_ROM GetPciRom;
} EFI_PCI_PLATFORM_PROTOCOL;

Parameters
PlatformNotify

The notification from the PCI bus enumerator to the platform that it is about to enter
a certain phase during the enumeration process. See the PlatformNotify()
function description.

PCI Platform Support Specification Draft for Review

16 August 2004 Version 0.9

PlatformPrepController

The notification from the PCI bus enumerator to the platform for each PCI controller
at several predefined points during PCI controller initialization. See the
PlatformPrepController() function description.

GetPlatformPolicy

Retrieves the platform policy regarding enumeration. See the
GetPlatformPolicy() function description.

GetPciRom

Gets the PCI device’s option ROM from a platform-specific location. See the
GetPciRom() function description.

Description
The EFI_PCI_PLATFORM_PROTOCOL is published by a platform-aware driver. This protocol is
optional; see PCI Platform Protocol Overview in Design Discussion for scenarios in which this
protocol is required. There cannot be more than one instance of this protocol in the system.
This protocol is installed on a separate handle during the DXE phase (before PCI enumeration).
This handle may not have any other protocols installed on it. If the PCI bus driver detects the
presence of this protocol during its EFI_DRIVER_BINDING_PROTOCOL.Start() function, it
will use the PCI Platform Protocol to obtain information about the platform policy. The PCI bus
driver will use this protocol to get the PCI device’s option ROM from a platform-specific location
in storage. It will also call the various member functions of this protocol at predefined points during
PCI bus enumeration. The member functions can be used for performing any platform-specific
initialization that is appropriate during the particular phase.

 Draft for Review Code Definitions

Version 0.9 August 2004 17

EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()

Summary
The platform driver receives notifications from the PCI bus enumerator at various phases during the
enumeration, just like the PCI host bridge driver.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PHASE_NOTIFY) (
 IN EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_CHIPSET_EXECUTION_PHASE ChipsetPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
HostBridge

The handle of the host bridge controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Phase

The phase of the PCI bus enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPh
ase() in the Intel® Platform Innovation Framework for EFI PCI Host Bridge
Resource Allocation Protocol Specification.

ChipsetPhase

Defines the execution phase of the PCI chipset driver. Type
EFI_PCI_CHIPSET_EXECUTION_PHASE is defined in "Related Definitions"
below.

Description
The PlatformNotify() function can be used to notify the platform driver so that it can
perform platform-specific actions. No specific actions are required.
Eight notification points are defined at this time. More synchronization points may be added as
required in the future. The PCI bus driver calls the platform driver twice for every Phase—once
before the PCI Host Bridge Resource Allocation Protocol driver is notified, and once after the PCI
Host Bridge Resource Allocation Protocol driver has been notified.

PCI Platform Support Specification Draft for Review

18 August 2004 Version 0.9

This member function may not perform any error checking on the input parameters. It also does not
return any error codes. If this member function detects any error condition, it needs to handle those
errors on its own because there is no way to surface any errors to the caller.

Related Definitions
//**
// EFI_PCI_CHIPSET_EXECUTION_PHASE
//**
typedef enum {
 ChipsetEntry,
 ChipsetExit,
 MaximumChipsetPhase
} EFI_PCI_CHIPSET_EXECUTION_PHASE;

EFI_PCI_CHIPSET_EXECUTION_PHASE is used to call a platform protocol and execute
platform-specific code. Following is a description of the fields in the above enumeration.

ChipsetEntry The phase that indicates the entry point to the PCI Bus Notify phase. This

platform hook is called before the PCI bus driver calls the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
driver.

ChipsetExit The phase that indicates the exit point to the Chipset Notify phase before
returning to the PCI Bus Driver Notify phase. This platform hook is called after
the PCI bus driver calls the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
driver.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 Draft for Review Code Definitions

Version 0.9 August 2004 19

EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()

Summary
The platform driver receives notifications from the PCI bus enumerator at various phases during
PCI controller initialization, just like the PCI host bridge driver.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER) (
 IN EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_HANDLE RootBridge,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_CHIPSET_EXECUTION_PHASE ChipsetPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
HostBridge

The associated PCI host bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

RootBridge

The associated PCI root bridge handle.
PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL functions to access the PCI
configuration space of the device. See Table 12-1 in the EFI 1.10 Specification for
the definition of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI controller enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproce
ssController() in the Intel® Platform Innovation Framework for EFI PCI Host
Bridge Resource Allocation Protocol Specification.

ChipsetPhase

Defines the execution phase of the PCI chipset driver. Type
EFI_PCI_CHIPSET_EXECUTION_PHASE is defined in
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify().

PCI Platform Support Specification Draft for Review

20 August 2004 Version 0.9

Description
The PlatformPrepController() function can be used to notify the platform driver so that it
can perform platform-specific actions. No specific actions are required.
Several notification points are defined at this time. More synchronization points may be added as
required in the future. The PCI bus driver calls the platform driver twice for every PCI controller—
once before the PCI Host Bridge Resource Allocation Protocol driver is notified, and once after the
PCI Host Bridge Resource Allocation Protocol driver has been notified.
This member function may not perform any error checking on the input parameters. It also does not
return any error codes. If this member function detects any error condition, it needs to handle those
errors on its own because there is no way to surface any errors to the caller.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 Draft for Review Code Definitions

Version 0.9 August 2004 21

EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()

Summary
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve platform policies regarding PCI enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PLATFORM_POLICY) (
 IN EFI_PCI_PLATFORM_PROTOCOL *This,
 OUT EFI_PCI_PLATFORM_POLICY *PciPolicy,
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
PciPolicy

The platform policy with respect to VGA and ISA aliasing. Type
EFI_PCI_PLATFORM_POLICY is defined in "Related Definitions" below.

Description
The GetPlatformPolicy() function retrieves the platform policy regarding PCI enumeration.
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve the policy.
The EFI_PCI_IO_PROTOCOL.Attributes() function allows a PCI device driver to ask for
various legacy ranges. Because PCI device drivers run after PCI enumeration, a request for legacy
allocation comes in after PCI enumeration. The only practical way to guarantee that such a request
from a PCI device driver will be fulfilled is to preallocate these ranges during enumeration. The
PCI bus enumerator does not know which legacy ranges may be requested and therefore must rely
on GetPlatformPolicy(). The data that is returned by GetPlatformPolicy()
determines the supported attributes that are returned by the
EFI_PCI_IO_PROTOCOL.Attributes() function. See "Related Definitions" below for a
description of the output parameter PciPolicy. For example, the platform can decide if it wishes
to support devices that require ISA aliases using this parameter. Note that the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes() function returns the
attributes that the root bridge hardware supports and does not depend upon preallocations.

PCI Platform Support Specification Draft for Review

22 August 2004 Version 0.9

Related Definitions
//**
// EFI_PCI_PLATFORM_POLICY
//**
typedef UINT32 EFI_PCI_PLATFORM_POLICY;

#define EFI_RESERVE_NONE_IO_ALIAS 0x0000
#define EFI_RESERVE_ISA_IO_ALIAS 0x0001
#define EFI_RESERVE_ISA_IO_NO_ALIAS 0x0002
#define EFI_RESERVE_VGA_IO_ALIAS 0x0004
#define EFI_RESERVE_VGA_IO_NO_ALIAS 0x0008

The legal combinations are listed in the table below.

EFI_RESERVE_NONE_IO_ALIAS Does not set aside either ISA or VGA I/O resources during PCI

enumeration. By using this selection, the platform indicates that it
does not want to support a PCI device that requires ISA or legacy
VGA resources. If a PCI device driver asks for these resources, the
request will be turned down.

EFI_RESERVE_ISA_IO_ALIAS |
EFI_RESERVE_VGA_IO_ALIAS

Sets aside the ISA I/O range and all the aliases during PCI
enumeration. VGA I/O ranges and aliases are included in ISA alias
ranges. In this scheme, 75 percent of the I/O space remains unused.
By using this selection, the platform indicates that it wants to support
PCI devices that require the following, at the cost of wasted I/O
space:
• ISA range and its aliases
• Legacy VGA range and its aliases

The PCI bus driver will not allocate I/O addresses out of the ISA I/O
range and its aliases. The following are the ISA I/O ranges:
• n100–n3FF
• n500–n7FF
• n900–nBFF
• nD00–nFFF

In this case, the PCI bus driver will ask the PCI host bridge driver for
larger I/O ranges. The PCI host bridge driver is not aware of the ISA
aliasing policy and merely attempts to allocate the requested ranges.
The first device that requests the legacy VGA range will get all the
legacy VGA range plus its aliased addresses forwarded to it. The first
device that requests the legacy ISA range will get all the legacy ISA
range plus its aliased addresses forwarded to it.

 Draft for Review Code Definitions

Version 0.9 August 2004 23

EFI_RESERVE_ISA_IO_NO_ALIAS |
EFI_RESERVE_VGA_IO_ALIAS

Sets aside the ISA I/O range (0x100–0x3FF) during PCI enumeration
and the aliases of the VGA I/O ranges. By using this selection, the
platform indicates that it will support VGA devices that require VGA
ranges, including those that require VGA aliases. The platform further
wants to support non-VGA devices that ask for the ISA range
(0x100–3FF), but not if it also asks for the ISA aliases. The PCI bus
driver will not allocate I/O addresses out of the legacy ISA I/O range
(0x100–0x3FF) range or the aliases of the VGA I/O range. If a PCI
device driver asks for the ISA I/O ranges, including aliases, the
request will be turned down. The first device that requests the legacy
VGA range will get all the legacy VGA range plus its aliased
addresses forwarded to it. When the legacy VGA device asks for
legacy VGA ranges and its aliases, all the upstream PCI-to-PCI
bridges must be set up to perform 10-bit decode on legacy VGA
ranges. To prevent two bridges from positively decoding the same
address, all PCI-to-PCI bridges that are peers to this bridge will have
to be set up to not decode ISA aliased ranges. In that case, all the
devices behind the peer bridges can occupy only I/O addresses that
are not ISA aliases. This is a limitation of PCI-to-PCI bridges and is
described in the white paper PCI-to-PCI Bridges and Card Bus
Controllers on Windows 2000, Windows XP, and Windows Server
2003. The PCI enumeration process must be cognizant of this
restriction.

EFI_RESERVE_ISA_IO_NO_ALIAS |
EFI_RESERVE_VGA_IO_NO_ALIAS

Sets aside the ISA I/O range (0x100–0x3FF) during PCI enumeration.
VGA I/O ranges are included in the ISA range. By using this
selection, the platform indicates that it wants to support PCI devices
that require the ISA range and legacy VGA range, but it does not
want to support devices that require ISA alias ranges or VGA alias
ranges. The PCI bus driver will not allocate I/O addresses out of the
legacy ISA I/O range (0x100–0x3FF). If a PCI device driver asks for
the ISA I/O ranges, including aliases, the request will be turned down.
By using this selection, the platform indicates that it will support VGA
devices that require VGA ranges, but it will not support VGA devices
that require VGA aliases. To truly support 16-bit VGA decode, all the
PCI-to-PCI bridges that are upstream to a VGA device, as well as
upstream to the parent PCI root bridge, must support 16-bit VGA I/O
decode. See the PCI-to-PCI Bridge Architecture Specification for
information regarding the 16-bit VGA decode support. This
requirement must hold true for every VGA device in the system. If any
of these bridges does not support 16-bit VGA decode, it will positively
decode all the aliases of the VGA I/O ranges and this selection must
be treated like EFI_RESERVE_ISA_IO_NO_ALIAS |
EFI_RESERVE_VGA_IO_ALIAS.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER PciPolicy is NULL.

PCI Platform Support Specification Draft for Review

24 August 2004 Version 0.9

EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

Summary
Gets the PCI device’s option ROM from a platform-specific location.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PCI_ROM) (
 IN EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE PciHandle,
 OUT VOID **RomImage,
 OUT UINTN *RomSize
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.
PciHandle

The handle of the PCI device. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

RomImage

If the call succeeds, the pointer to the pointer to the option ROM image. Otherwise,
this field is undefined. The memory for RomImage is allocated by
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() using the EFI Boot Service
AllocatePool(). It is the caller’s responsibility to free the memory using the EFI
Boot Service FreePool(), when the caller is done with the option ROM.

RomSize

If the call succeeds, a pointer to the size of the option ROM size. Otherwise, this field
is undefined.

Description
The GetPciRom() function gets the PCI device’s option ROM from a platform-specific location.
The option ROM will be loaded into memory. This member function is used to return an image that
is packaged as a PCI 2.2 option ROM. The image may contain both legacy and EFI option ROMs.
See the EFI 1.10 Specification for details. This member function can be used to return option ROM
images for embedded controllers. Option ROMs for embedded controllers are typically stored in
platform-specific storage, and this member function can retrieve it from that storage and return it to
the PCI bus driver. The PCI bus driver will call this member function before scanning the ROM
that is attached to any controller, which allows a platform to specify a ROM image that is different
from the ROM image on a PCI card.

 Draft for Review Code Definitions

Version 0.9 August 2004 25

Status Codes Returned
EFI_SUCCESS The option ROM was available for this device and loaded into

memory.

EFI_NOT_FOUND No option ROM was available for this device.

EFI_OUT_OF_RESOURCES No memory was available to load the option ROM.

EFI_DEVICE_ERROR An error occurred in getting the option ROM.

PCI Platform Support Specification Draft for Review

26 August 2004 Version 0.9

Incompatible PCI Device Support Protocol

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

Summary
Allows the PCI bus driver to support resource allocation for some PCI devices that do not comply
with the PCI Specification.

 NOTE
This protocol is optional. Only those platforms that implement this protocol will have the capability
to support incompatible PCI devices. The absence of this protocol can cause the PCI bus driver to
configure these incompatible PCI devices incorrectly. As a result, these devices may not work
properly.

GUID
#define EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL_GUID \
{0xeb23f55a, 0x7863, 0x4ac2, 0x8d, 0x3d, 0x95, 0x65, 0x35, 0xde,
0x3, 0x75}

Protocol Interface Structure
typedef struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL {
 EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE CheckDevice;
} EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL;

Parameters
CheckDevice

Returns a list of ACPI resource descriptors that detail any special resource
configuration requirements if the specified device is a recognized incompatible PCI
device. See the CheckDevice() function description.

Description
The EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL is used by the PCI bus driver
to support resource allocation for some PCI devices that do not comply with the PCI Specification.
This protocol can find some incompatible PCI devices and report their special resource
requirements to the PCI bus driver. The generic PCI bus driver does not have prior knowledge of
any incompatible PCI devices. It interfaces with the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL to find out if a device is
incompatible and to obtain the special configuration requirements for a specific incompatible PCI
device.
This protocol is optional, and only one instance of this protocol can be present in the system. If a
platform supports this protocol, this protocol is produced by a Driver Execution Environment
(DXE) driver and must be made available before the Boot Device Selection (BDS) phase. The PCI
bus driver will look for the presence of this protocol before it begins PCI enumeration.

 Draft for Review Code Definitions

Version 0.9 August 2004 27

If this protocol exists in a platform, it indicates that the platform has the capability to support those
incompatible PCI devices. However, final support for incompatible PCI devices still depends on the
implementation of the PCI bus driver. The PCI bus driver may fully, partially, or not even support
these incompatible devices.
During PCI bus enumeration, the PCI bus driver will probe the PCI Base Address Registers (BARs)
for each PCI device—regardless of whether the PCI device is incompatible or not—to determine
the resource requirements so that the PCI bus driver can invoke the proper PCI resources for them.
Generally, this resource information includes the following:
• Resource type
• Resource length
• Alignment
However, some incompatible PCI devices may have special requirements. As a result, the length or
the alignment that is derived through BAR probing may not be exactly the same as the actual
resource requirement of the device. For example, there are some devices that request I/O resources
at a length of 0x100 from their I/O BAR, but these incompatible devices will never work correctly
if an odd I/O base address, such as 0x100, 0x300, or 0x500, is assigned to the BAR. Instead, these
devices request an even base address, such as 0x200 or 0x400. The Incompatible PCI Device
Support Protocol can then be used to obtain these special resource requirements for these
incompatible PCI devices. In this way, the PCI bus driver will take special consideration for these
devices during PCI resource allocation to ensure that they can work correctly.
This protocol may support the following incompatible PCI BAR types:
• I/O or memory length that is different from what the BAR reports
• I/O or memory alignment that is different from what the BAR reports
• Fixed I/O or memory base address
See the Conventional PCI Specification 3.0 for the details of how a PCI BAR reports the resource
length and the alignment that it requires.

PCI Platform Support Specification Draft for Review

28 August 2004 Version 0.9

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice()

Summary
Returns a list of ACPI resource descriptors that detail the special resource configuration
requirements for an incompatible PCI device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE) (
 IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
 IN UINTN VendorId,
 IN UINTN DeviceId,
 IN UINTN RevisionId,
 IN UINTN SubsystemVendorId,
 IN UINTN SubsystemDeviceId,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
instance.

VendorID

A unique ID to identify the manufacturer of the PCI device. See the Conventional
PCI Specification 3.0 for details.

DeviceID

A unique ID to identify the particular PCI device. See the Conventional PCI
Specification 3.0 for details.

RevisionID

A PCI device-specific revision identifier. See the Conventional PCI Specification 3.0
for details.

SubsystemVendorId

Specifies the subsystem vendor ID. See the Conventional PCI Specification 3.0 for
details.

SubsystemDeviceId

Specifies the subsystem device ID. See the Conventional PCI Specification 3.0 for
details.

Configuration

A list of ACPI resource descriptors that detail the configuration requirement. See
Table 3-1 in the "Description" subsection below for the definition.

 Draft for Review Code Definitions

Version 0.9 August 2004 29

Description
The CheckDevice() function returns a list of ACPI resource descriptors that detail the special
resource configuration requirements for an incompatible PCI device.
Prior to bus enumeration, the PCI bus driver will look for the presence of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
protocol can be present in the system. For each PCI device that the PCI bus driver discovers, the
PCI bus driver calls this function with the device’s vendor ID, device ID, revision ID, subsystem
vendor ID, and subsystem device ID. If the VendorId, DeviceId, RevisionId,
SubsystemVendorId, or SubsystemDeviceId value is set to (UINTN)-1, that field will
be ignored. The ID values that are not (UINTN)-1 will be used to identify the current device.
This function will only return EFI_SUCCESS. However, if the device is an incompatible PCI
device, a list of ACPI resource descriptors will be returned in Configuration. Otherwise,
NULL will be returned in Configuration instead. The PCI bus driver does not need to allocate
memory for Configuration. However, it is the PCI bus driver’s responsibility to free it. The
PCI bus driver then can configure this device with the information that is derived from this list of
resource nodes, rather than the result of BAR probing.
Only the following two resource descriptor types from the ACPI Specification may be used to
describe the incompatible PCI device resource requirements:
• QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1)
• End Tag (ACPI 2.0, section 6.4.2.8)
The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 3-1 and Table 3-2 below
contain these two descriptor types. See the ACPI Specification for details on the field values. Click
on the links below to take you directly to each table:
• Table 3-1: ACPI 2.0 QWORD Address Space Descriptor Usage
• Table 3-2: ACPI 2.0 End Tag Usage

Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage
Byte
Offset

Byte
Length Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:

 0: Memory range

 1: I/O range

Other values will be ignored.

0x04 0x01 General flags. Ignored.

0x05 0x01 Type-specific flags. Ignored.

0x06 0x08 Address Space Granularity. Ignored.

continued

PCI Platform Support Specification Draft for Review

30 August 2004 Version 0.9

 Table 3-1. ACPI 2.0 QWORD Address Space Descriptor Usage (continued)
Byte
Offset

Byte
Length Data Description

0x0E 0x08 Address Range Minimum. Fixed resource base. If the device does not
request a fixed base, it must be 0.

0x16 0x08 Address Range Maximum. Used to convey the alignment information. This
value must be 2n-1. If no special alignment is required for the BAR, it must
be 0. Then the alignment will set to (length-1), where the length is
derived through the BAR probing.

0x1E 0x08 Address Translation Offset. Used to indicate the BAR Index from 0 to 5.
Specially, (UINT64)-1 in this field means all the PCI BARs on the
device.

0x26 0x08 Address Range Length. Length of the requested resource. If the device has
no special length request, it must be 0. Then the length that was obtained
from BAR probing will be applied.

Table 3-2. ACPI 2.0 End Tag Usage
Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

Status Codes Returned
EFI_SUCCESS The function always returns EFI_SUCCESS.

	Intel® Platform Innovation Framework for EFI PCI Platform Support Specification
	Disclaimer
	Revision History
	Contents
	1 Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Design Discussion
	Target Audience
	PCI Platform Support Related Terms
	PCI Platform Support Related Information
	PCI Platform Protocol
	PCI Platform Protocol Overview

	Incompatible PCI Device Support Protocol
	Incompatible PCI Device Support Protocol Overview
	Usage Model for the Incompatible PCI Device Support Protocol

	3 Code Definitions
	Introduction
	PCI Platform Protocol
	EFI_PCI_PLATFORM_PROTOCOL
	EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()
	EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()
	EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()
	EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

	Incompatible PCI Device Support Protocol
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice()

