
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Platform IDE Initialization Protocol
Specification

Draft for Review

Version 0.3
August 9, 2004

Platform IDE Initialization Protocol Specification Draft for Review

ii August 2004 Version 0.3

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.3 August 2004 iii

Revision History
Revision Revision History Date

0.3 First public release. 8/9/04

Platform IDE Initialization Protocol Specification Draft for Review

iv August 2004 Version 0.3

 Draft for Review

Version 0.3 August 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
Platform IDE Initialization Protocol Overview.. 11
Platform IDE Initialization Protocol Related Information ... 11
Platform IDE Initialization Protocol Terms... 11

3 Code Definitions... 13
Introduction ... 13
Platform IDE Initialization Protocol.. 13

EFI_PLATFORM_IDE_INIT_PROTOCOL ... 13
EFI_PLATFORM_IDE_INIT_PROTOCOL.GetChannelInfo()....................................... 15
EFI_PLATFORM_IDE_INIT_PROTOCOL.NotifyPhase() .. 17
EFI_PLATFORM_IDE_INIT_PROTOCOL.SubmitData() ... 19
EFI_PLATFORM_IDE_INIT_PROTOCOL.OverrideModes() 21

Platform IDE Initialization Protocol Specification Draft for Review

vi August 2004 Version 0.3

 Draft for Review

Version 0.3 August 2004 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
Platform IDE Initialization Protocol of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This protocol abstracts the platform aspects of the IDE
channels that the IDE-controller-specific driver cannot know and is used by an IDE controller
driver to obtain platform-specific information. This specification does the following:
• Describes the basic components of the Platform IDE Initialization Protocol
• Provides code definitions for the Platform IDE Initialization Protocol and platform-IDE-related

type definitions that are architecturally required by the Intel® Platform Innovation Framework
for EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Platform IDE Initialization Protocol Specification Draft for Review

8 August 2004 Version 0.3

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

 Draft for Review Introduction

Version 0.3 August 2004 9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Platform IDE Initialization Protocol Specification Draft for Review

10 August 2004 Version 0.3

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.3 August 2004 11

2
Design Discussion

Platform IDE Initialization Protocol Overview
The Platform IDE Initialization Protocol is used by an IDE controller driver to obtain platform-
specific information. This protocol abstracts the platform aspects of the IDE channels that the IDE-
controller-specific driver cannot know. This protocol is not tied to any specific bus or any specific
IDE controller hardware. This protocol is optional.
See the Code Definitions section in this specification for the definition of
EFI_PLATFORM_IDE_INIT_PROTOCOL.
See the Intel® Platform Innovation Framework for EFI IDE Controller Initialization Protocol
Specification for additional background information and design discussion about the IDE
subsystem.

Platform IDE Initialization Protocol Related Information
The following sources of information are referenced in this specification or may be useful to you.
See References in the Framework master help system for additional references.
• ATA Host Adapter Standards, Working Draft Version 0f:

http://www.t13.org/*
• Information Technology - AT Attachment with Packet Interface - 6 (ATA/ATAPI-6):

http://www.t13.org/*
• Intel® Platform Innovation Framework for EFI IDE Controller Initialization Protocol

Specification, version 0.9

Platform IDE Initialization Protocol Terms
See Design Discussion > IDE Controller Terms in the Intel® Platform Innovation Framework for
EFI IDE Controller Initialization Protocol Specification for definitions of IDE-related terms.

Platform IDE Initialization Protocol Specification Draft for Review

12 August 2004 Version 0.3

 Draft for Review

Version 0.3 August 2004 13

3
Code Definitions

Introduction
This section contains the basic definitions of the Platform IDE Initialization Protocol. The
following protocol is defined in this section:
• EFI_PLATFORM_IDE_INIT_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in "Related Definitions" of the parent function definition:
• EFI_IDE_CABLE_TYPE
• EFI_ATA_COLLECTIVE_MODE_BITMAP
• EFI_ATA_MODE_BITMAP
• EFI_ATA_EXTENDED_MODE_BITMAP

Platform IDE Initialization Protocol

EFI_PLATFORM_IDE_INIT_PROTOCOL

Summary
Provides the basic interfaces to abstract the platform-specific aspects of the IDE bus. This protocol
is optional.

GUID
#define EFI_PLATFORM_IDE_INIT_PROTOCOL_GUID \
{ 0x377c66a3, 0x8fe7, 0x4ee8, 0x85, 0xb8, 0xf1, 0xa2, 0x82, 0x56,
0x9e, 0x3b };

Protocol Interface Structure
typedef struct _EFI_PLATFORM_IDE_INIT_PROTOCOL {
 EFI_PLATFORM_IDE_GET_CHANNEL_INFO GetChannelInfo;
 EFI_PLATFORM_IDE_NOTIFY_PHASE NotifyPhase;
 EFI_PLATFORM_IDE_SUBMIT_DATA SubmitData;
 EFI_PLATFORM_IDE_OVERRIDE_MODES OverrideModes;
} EFI_PLATFORM_IDE_INIT_PROTOCOL;

Parameters
GetChannelInfo

Returns the information about a specific channel. See the GetChannelInfo()
function description.

Platform IDE Initialization Protocol Specification Draft for Review

14 August 2004 Version 0.3

NotifyPhase

The notification that the IDE bus driver is about to enter the specified phase during
the enumeration process. See the NotifyPhase() function description.

SubmitData

Submits the Drive Identify data that was returned by the device. See the
SubmitData() function description.

OverrideModes

Overrides the default mode settings by the IDE controller driver. See the
OverrideModes() function description.

Description
The EFI_PLATFORM_IDE_INIT_PROTOCOL provides platform-specific information to the IDE
controller driver. There cannot be more than one instance of
EFI_PLATFORM_IDE_INIT_PROTOCOL in a system. This protocol is installed on a separate
handle.
A platform-specific driver produces the EFI_PLATFORM_IDE_INIT_PROTOCOL. Note that this
functionality can be part of a platform driver that produces multiple platform-specific protocols.
The driver that produces EFI_PLATFORM_IDE_INIT_PROTOCOL does not follow the EFI
Driver Model.
This protocol is optional and may not be required. For example, if all the channels are always
enabled and the IDE controller can find out the cable type or does not need to find out the cable
type, EFI_PLATFORM_IDE_INIT_PROTOCOL may not be needed. The IDE controller driver
consumes the EFI_PLATFORM_IDE_INIT_PROTOCOL. The IDE controller driver and other
drivers that participate in IDE configuration are described in the Intel® Platform Innovation
Framework for EFI IDE Controller Initialization Protocol Specification.

 Draft for Review Code Definitions

Version 0.3 August 2004 15

EFI_PLATFORM_IDE_INIT_PROTOCOL.GetChannelInfo()

Summary
Returns information about the specified IDE channel behind a specified controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_IDE_GET_CHANNEL_INFO) (
 IN EFI_PLATFORM_IDE_INIT_PROTOCOL *This,
 IN EFI_HANDLE Controller,
 IN UINT8 Channel,
 OUT BOOLEAN *Enabled,
 OUT UINT8 *MaxDevices,
 OUT EFI_IDE_CABLE_TYPE *CableType
);

Parameters
This

Pointer to the EFI_PLATFORM_IDE_INIT_PROTOCOL instance.
Controller

The handle that corresponds to the IDE controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Channel

Zero-based channel number.
Enabled

TRUE if this channel is enabled. Disabled channels are not scanned to see if any
devices are present.

MaxDevices

The maximum number of IDE devices that the bus driver can expect on this channel.
For the ATA/ATAPI-6 specification, this number will either be 1 or 2. For Serial
ATA (SATA) configurations with a port multiplier, this number can be as large as
16.

CableType

The type of cable that is detected on this channel. Type EFI_IDE_CABLE_TYPE is
defined in "Related Definitions" below.

Description
This member function can be used to obtain information about a particular channel on a particular
IDE controller. The IDE controller driver will pass this information to the IDE bus driver. The IDE
bus driver uses this information during the enumeration process. The information that is returned by

Platform IDE Initialization Protocol Specification Draft for Review

16 August 2004 Version 0.3

this call cannot change during the boot process because the consumer may call this function once
for every controller and cache this information.
This member function is similar to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo() except for the addition of
another input parameter, Controller, and the output parameter CableType. The
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo() function is defined in the
Intel® Platform Innovation Framework for EFI IDE Controller Initialization Protocol
Specification.
If Enabled is set to FALSE, the IDE bus driver will not scan the channel. Note that it will not
prevent an operating system driver from scanning the channel.
For most of today’s controllers, MaxDevices will either be 1 or 2. For SATA controllers, this
value will always be 1. SATA configurations can contain SATA port multipliers. SATA port
multipliers behave like SATA bridges and can support up to 16 devices on the other side. If an
SATA port out of the IDE controller is connected to a port multiplier, MaxDevices will be set to
the number of SATA devices that the port multiplier supports. Because today’s port multipliers
support up to 16 SATA devices, this number can be as large as 16. The IDE bus driver is required
to scan for the presence of port multipliers behind an SATA controller and enumerate up to
MaxDevices number of devices behind the port multiplier. In this context, the collection of
devices behind a port multiplier constitute a channel. See the "Design Discussion" section in the
Intel® Platform Innovation Framework for EFI IDE Controller Initialization Protocol
Specification for more information on port multipliers and SATA configurations.

Related Definitions
//***
// EFI_IDE_CABLE_TYPE
//***
typedef enum {
 EfiIdeCableTypeUnknown,
 EfiIdeCableType40pin,
 EfiIdeCableType80Pin,
 EfiIdeCableTypeSerial,
 EfiIdeCableTypeMaximum
} EFI_IDE_CABLE_TYPE;

Status Codes Returned
EFI_SUCCESS The information was returned without any errors.

EFI_UNSUPPORTED The platform does not have any information about this controller.
The controller driver should use defaults.

EFI_INVALID_PARAMETER Channel is invalid for this Controller.

EFI_INVALID_PARAMETER Controller is not a valid handle.

 Draft for Review Code Definitions

Version 0.3 August 2004 17

EFI_PLATFORM_IDE_INIT_PROTOCOL.NotifyPhase()

Summary
The notifications from the IDE bus driver that it is about to enter a certain phase of the IDE channel
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_IDE_NOTIFY_PHASE) (
 IN EFI_PLATFORM_IDE_INIT_PROTOCOL *This,
 IN EFI_HANDLE Controller,
 IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
 IN UINT8 Channel
);

Parameters
This

Pointer to the EFI_PLATFORM_IDE_INIT_PROTOCOL instance.
Controller

The handle that corresponds to the IDE controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Phase

The phase during enumeration. Type EFI_IDE_CONTROLLER_ENUM_PHASE is
defined in EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() in
the Intel® Platform Innovation Framework for EFI IDE Controller Initialization
Protocol Specification.

Channel

Zero-based channel number.

Description
This member function can be used to notify the platform IDE driver to perform specific actions,
including any platform-specific initialization, so that the platform is ready to enter the next phase.
Seven notification points are defined at this time. These notification points are the same as those
defined in the IDE Controller Initialization Protocol. See "Related Definitions" in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() in the Intel® Platform
Innovation Framework for EFI IDE Controller Initialization Protocol Specification for the
definition of various notification points.
More synchronization points may be added as required in the future.
This member function is similar to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() except for the addition of
another input parameter, Controller.

Platform IDE Initialization Protocol Specification Draft for Review

18 August 2004 Version 0.3

EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() calls
EFI_PLATFORM_IDE_INIT_PROTOCOL.NotifyPhase() before performing any
controller-specific actions.

Status Codes Returned
EFI_SUCCESS The notification was accepted without any errors.

EFI_INVALID_PARAMETER Phase is invalid.

EFI_INVALID_PARAMETER Controller is not a handle.

EFI_INVALID_PARAMETER Channel is invalid for this Controller.

EFI_NOT_READY This phase cannot be entered at this time.

 Draft for Review Code Definitions

Version 0.3 August 2004 19

EFI_PLATFORM_IDE_INIT_PROTOCOL.SubmitData()

Summary
Submits the device information to the IDE platform driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_IDE_SUBMIT_DATA) (
 IN EFI_PLATFORM_IDE_INIT_PROTOCOL *This,
 IN EFI_HANDLE Controller,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_IDENTIFY_DATA *IdentifyData
);

Parameters
This

Pointer to the EFI_PLATFORM_IDE_INIT_PROTOCOL instance.
Controller

The handle that corresponds to the IDE controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
IdentifyData

The device’s response to the ATA IDENTIFY_DEVICE command. Type
EFI_IDENTIFY_DATA is defined in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() in the Intel®
Platform Innovation Framework for EFI IDE Controller Initialization Protocol
Specification.

Description
This member function is used by the IDE controller driver to pass detailed information about a
particular device to the platform driver. The information is obtained by the IDE bus driver by
issuing an ATA or ATAPI IDENTIFY_DEVICE command. IdentifyData is the pointer to the
response data buffer. The IdentifyData buffer is owned by the caller, and the IDE platform
driver must make a local copy of the entire buffer or parts of the buffer as needed. The original
IdentifyData buffer pointer may not be valid at a later point.

Platform IDE Initialization Protocol Specification Draft for Review

20 August 2004 Version 0.3

The platform driver may consult various fields of the EFI_IDENTIFY_DATA structure and make
platform-specific decisions. For example, the IDE controller driver may examine the vendor and
type/mode field to match known bad drives.
If the device does not exist, IdentifyData will be set to NULL.
This member function is similar to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() except for the addition of
another input parameter, Controller.
 EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() is defined in the Intel®
Platform Innovation Framework for EFI IDE Controller Initialization Protocol Specification.
The IDE controller driver must call
EFI_PLATFORM_IDE_INIT_PROTOCOL.SubmitData() when the bus driver calls
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData().

Status Codes Returned
EFI_SUCCESS The information was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid for this Controller.

EFI_INVALID_PARAMETER Controller is not a handle.

EFI_INVALID_PARAMETER Device is invalid.

 Draft for Review Code Definitions

Version 0.3 August 2004 21

EFI_PLATFORM_IDE_INIT_PROTOCOL.OverrideModes()

Summary
Submits the device information to the IDE platform driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_IDE_OVERRIDE_MODES) (
 IN EFI_PLATFORM_IDE_INIT_PROTOCOL *This,
 IN EFI_HANDLE Controller,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN OUT EFI_ATA_COLLECTIVE_MODE_BITMAP *SupportedModes
);

Parameters
This

Pointer to the EFI_PLATFORM_IDE_INIT_PROTOCOL instance.
Controller

The handle that corresponds to the IDE controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
SupportedModes

The bit map representing the various modes that the IDE device supports. Type
EFI_ATA_COLLECTIVE_MODE_BITMAP is defined in "Related Definitions"
below.

Description
This member function is used by the platform to override the default mode selection algorithm in
the IDE controller driver. The platform may use this member function to do the following:
• Force incompatible devices to operate at a lower mode.
• Implement user-configurable mode settings.
The platform may also use this function in case the platform design prevents the certain mode, even
though the controller supports that mode.
When EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() is called, the IDE
controller driver calls EFI_PLATFORM_IDE_INIT_PROTOCOL.OverrideModes() and

Platform IDE Initialization Protocol Specification Draft for Review

22 August 2004 Version 0.3

thereby provides the platform the opportunity to override the mode settings for various transfer
protocols.
On input, the parameter SupportedModes lists all the transfer protocols and the supported
modes for each of the protocols. The IDE controller driver calculates the input settings of
SupportedModes. If the platform does not wish to override the IDE controller selection, it will
not update the contents of the SupportedModes buffer. If the platform wishes to override the
IDE controller selection, it will update the contents of the SupportedModes buffer. The
platform can remove mode selections from the SupportedModes buffer only by clearing bits.
The platform cannot add any selections by setting any bits in the SupportedModes buffer. The
platform driver must not change the ordering within SupportedModes.ExtModeBitmap. The
IDE controller driver will choose the fastest mode settings within the output buffer
SupportedModes.
This member function may be called multiple times for an IDE device because
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() can be called multiple
times for an IDE device. EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() is
defined in the Intel® Platform Innovation Framework for EFI IDE Controller Initialization
Protocol Specification.

Related Definitions
//***
// EFI_ATA_COLLECTIVE_MODE_BITMAP
//***
typedef struct {
 EFI_ATA_MODE_BITMAP PioModeBitmap;
 EFI_ATA_MODE_BITMAP SingleWordDmaModeBitmap;
 EFI_ATA_MODE_BITMAP MultiWordDmaModeBitmap;
 EFI_ATA_MODE_BITMAP UdmaModeBitmap;
 UINT32 ExtModeCount;
 EFI_ATA_EXTENDED_MODE_BITMAP ExtModeBitmap[1];
} EFI_ATA_COLLECTIVE_MODE_BITMAP;

PioModeBitmap

Specifies the Programmed Input/Output (PIO) mode bit map. PIO modes are defined
in the ATA/ATAPI specification. Type EFI_ATA_MODE_BITMAP is defined
below.

SingleWordDmaModeBitmap

Specifies the single word DMA mode bit map.
MultiWordDmaModeBitmap

Specifies the multiword DMA mode bit map.
UdmaModeBitmap

Specifies the ultra DMA (UDMA) mode bit map.

 Draft for Review Code Definitions

Version 0.3 August 2004 23

ExtModeCount

The number of entries in the extended-mode bit map. Can be zero. This field
provides extensibility.

ExtModeBitmap

ExtModeCount number of entries. Each entry represents a transfer protocol other
than the ones defined above (i.e., PIO, single word DMA, multiword DMA, and
UDMA). This field is defined for extensibility. Type
EFI_ATA_EXTENDED_MODE_BITMAP is defined below.

//***
// EFI_ATA_MODE_BITMAP
//***
typedef UINT64 EFI_ATA_MODE_BITMAP;

EFI_ATA_MODE_BITMAP is a bit map representing various supported modes. It can convey more
than one mode per transfer protocol by setting more than one bit. Mode x is supported if bit x is set.

//***
// EFI_ATA_EXTENDED_MODE_BITMAP
//***
typedef struct {
 EFI_ATA_EXT_TRANSFER_PROTOCOL TransferProtocol;
 EFI_ATA_MODE_BITMAP ModeBitmap;
} EFI_ATA_EXTENDED_MODE_BITMAP;

TransferProtocol

An enumeration defining various transfer protocols other than the protocols that exist
at the time this specification was developed (i.e., PIO, single word DMA, multiword
DMA, and UDMA). Each transfer protocol is associated with a mode. The various
transfer protocols are defined by the ATA/ATAPI specification. This enumeration
makes the interface extensible because we can support new transport protocols
beyond UDMA. Type EFI_ATA_EXT_TRANSFER_PROTOCOL is defined in
"Related Definitions" in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() in the
Intel® Platform Innovation Framework for EFI IDE Controller Initialization
Protocol Specification.

ModeBitmap

A bit map representing various supported modes. Type EFI_ATA_MODE_BITMAP
is defined above.

Platform IDE Initialization Protocol Specification Draft for Review

24 August 2004 Version 0.3

Status Codes Returned
EFI_SUCCESS The information was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid.

EFI_INVALID_PARAMETER Controller is not a handle.

EFI_INVALID_PARAMETER Device is invalid.

	Intel® Platform Innovation Framework for EFI Platform IDE Initialization Protocol Specification
	Disclaimer
	Revision History
	Contents
	1 Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Design Discussion
	Platform IDE Initialization Protocol Overview
	Platform IDE Initialization Protocol Related Information
	Platform IDE Initialization Protocol Terms

	3 Code Definitions
	Introduction
	Platform IDE Initialization Protocol
	EFI_PLATFORM_IDE_INIT_PROTOCOL
	EFI_PLATFORM_IDE_INIT_PROTOCOL.GetChannelInfo()
	EFI_PLATFORM_IDE_INIT_PROTOCOL.NotifyPhase()
	EFI_PLATFORM_IDE_INIT_PROTOCOL.SubmitData()
	EFI_PLATFORM_IDE_INIT_PROTOCOL.OverrideModes()

